EPA Certification Test Report

The following models are EPA certified under the following attached test report:	H300
	Model #
Wood Stoves	H300
Wood Inserts	n/a
Wood Fireplaces	n/a
Pellet Stoves	n/a
Pellet Inserts	n/a

Full US Environmental Protection Agency ("EPA") certification test reports have been reported to the EPA. Test reports may contain sensitive, confidential business information which has been specifically excluded and/or redacted from this publicly posted test report.

Certification Test Report

Fireplace Products International Ltd.

Freestanding Wood Stove

Prepared for:

Fireplace Products International Ltd.

6988 Venture Street

Delta, BC V4G 1H4

Prepared by:

OMNI-Test Laboratories, Inc.

5465 SW Western Avenue, Suite G

Beaverton, Oregon 97005

(503) 643-3788

Test Period:

February 20, 2003 - February 26, 2003

Report Date:

March 2003

Project Number:

219-S-04-3

All data and information contained in this report are confidential and proprietary to Fireplace Products International Ltd. Its significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations, or surveys made. The contents of this report cannot be copied or quoted, except in full, without specific, written authorization from Fireplace Products International Ltd. and OMNI-Test Laboratories, Inc. No use of the OMNI-Test Laboratories, Inc. (O-TL) name, logo, or registered (O-TL) mark is permitted, except as expressly authorized by OMNI-Test Laboratories, Inc. in writing.

AUTHORIZED SIGNATORIES

This report has been reviewed and approved by the following authorized signatories.

The Melas

Paul E. Tiegs, President

OMNI-Test Laboratories, Inc.

Richard C. Sparwasser, Vice President

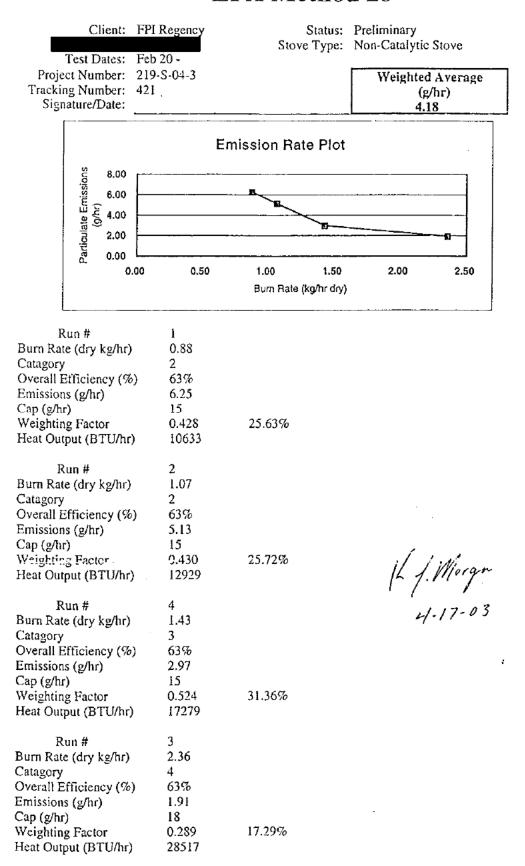
OMNI-Test Laboratories, Inc.

Fireplace Products International Ltd.

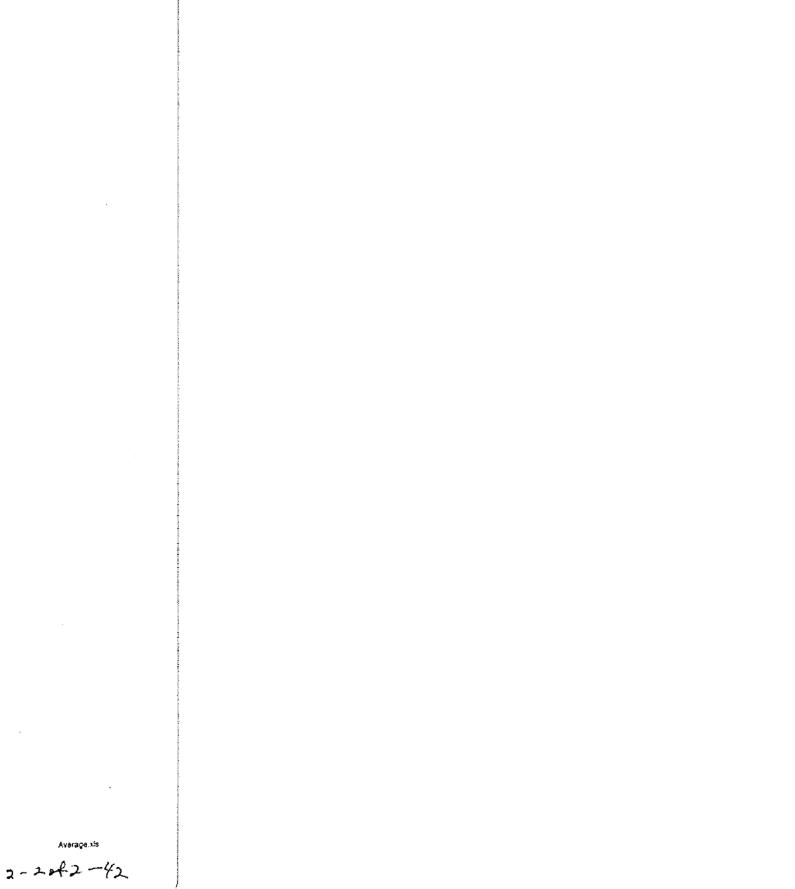
Test Dates: February 20, 2003 - February 26, 2003

Table 1.1 - Particulate Emissions

Run	Burn Rate (kg/hr dry)	Method 5G Emissions (g/hr)
1	0.88	6.25
2	1.07	5.13
3	2.36	1.91
4	1.43	2.97
Weighted particulate emis	ssion average of four test runs:	4.18 grams per hour.


Table 1.2 - Test Facility Conditions

	Room Tem (°F	•	Barometric		Air Ve (ft√r	
Run	Before	After	Before	After	Before	After
1	73	73	29.96	29.96	<50	<50
2	74	75	29.98	29.92	<50	<50
3	66	68	29.90	29.86	<50	<50
4	68	71	29.90	29.81	<50	<50


£=9

OMNI-Test Laboratories, Inc. Page 1 of 1

EPA Weighted Average Emissions **EPA Method 28**

Occurrent Control No. P-SSF-0005 (EPA Method 28 Weighted Average Emissions) xls. Effective Date: 3/14/2002

Run 1

OMNI-Test Laboratories, Inc.
Certification Test Report dated 3/17/03: \\Omni02\users\Testing\Fireplace Products International Ltd\219-S-04-3 FPI Hampton\Series D\219-S-04-3.doc

2-30+2-42

Run: 1	7	
Manufacturer:	FPI Regency	
Model:	Hampton D	
Tracking No.:	421	
Project No.:	319-2-04-7	
Test D≭e:	20-Feb-03	
Beginning Clock Time:	12:15	
Recording Interval:	10 min.	
Tatal Campling Times	110	

			Veloc	ity Trave	rse Data				٦
	Pt.1	PL2	Pt.3	Pti	PL5	Pt-6	PL7	PL8	1
Initial dP	9.028	0.032	0.036	0.036	0.034	0.036	0.034	0.028	-⊦
initial Temp.	93	93	93	93	92	92	92	92	٦,,

				٠	išmananas: 1
PM Control Module:	20				Turnel Velocity:
Dilution Turnel MW(dry):	29.00	lb lb-mole			Intial Tunnel Flow:
Dilution Turnel MW(wet):	28.56	lb-lb-mole			Average Tunnel Flow:
Dilution Turnel H2O:	4.00	percent			Turnel Area:
Dilution Tunnel Static:	-0.800	'H2O			Post-Test Leak Check:
Pitot Tube Cp:	0.99	•			ruei Moisture (dry basis
Meter Box Y Factor:	0.977				Total Particulate:
Barometric Pressure:	Begin	Middle	End	Average	Filter Holder No.:
_	29.96	29.98	29 95	19.97	"Hg

Signature Date:

Turnel Velocity:

Intial Turnel Flow:

Intial Turnel Flow:

Intial Turnel Flow:

Intial Turnel Flow:

Intial Turnel Area:

Post-Test Leak Check:

Turnel Moisture (dry basis

Total Particulate:

85.7 mg

			Parti	culate S	ampling Da	ita			Fuel W	eight, lb				W'~	od Heater T	Cemperatur	- Data of				***	Ca. d
Elapsed		Ī		<u> </u>		Dilution	i			1.5.1.2.1.0		ī · · · · · · · · · · · · · · · · · · ·	Τ	1	d Heater 1	- emperatur	c Data, Or		T		,	Stack
Time	Gas Meter Cubic Feet	Sample Rate. cfm	Oritice dH	Mas oF	Meter Vac. In Hg.	Turnel Temp.	Dilution Turnel dP	ı	Scale Reading	Weight Change	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Ri ght	Firebox Interior	Average Surface	Stack	Filter	Impinger exit	Ambient	Draft in H2O
0	123,700		0.00	75	0	93	0.033		12.2		524	160	228	312	260	700	296.8	273	72	71	73	10000
10	129.040	0.53	0.75	78	2.5	92	0.033	103	11.3	-0.9	520	159	264	295	259	704	299.4	299	73	57		-0.048
20	134.365	0.53	0.75	83	2.5	85	0.033	101	10.9	-0.4	416	159	257	277	245	588	270.8	223	73	56	72	-0.053 -0.045
30	139.760	0.54	0.75	89	2.5	83	0.033	101	10.3	-0.6	398	159	243	263	231	826	258.8	214	73	55	72	-0.045
40	145.165	0.54	0.75	94	2.5	85	0.033	[0]	9.7	-0.6	463	156	194	257	220	753	258.0	252	72	55	72	-
50	150.600	0.54	0.75	97	2.5	86	0.033	101	8.8	-0.9	546	153	178	257	214	1067	269.6	292	73	55	72	-0.050
60	156.040	0.54	0.75	100	2.5	91	0.033	101	7.6	-1.2	691	148	194	274	214	1102	304.2	350	72	55	72	-0.060
70	161.490	0.55	0.75	102	2.5	88	0.033	100	6.9	-0.7	626	145	207	288	219	910	297.0	306	72	55		-0.063
80	166.970	0.55	0.75	103	2.5	88	0.033	101	6.2	-0.7	611	142	209	291	228	922	296.2	296	72	35	72	-0.055 -0.055
90	172,450	0.55	0.75	103	2.5	88	0.033	101	5.5	-0.7	583	141	214	290	234	856	292.4	283	72	56	72	
100	177.930	0.55	0.75	104	2.5	87	0.033	101	5.0	+0.5	527	142	213	286	240	855	281.6	264	72		72	-0.052
110	183.410	0.55	0.75	105	2.5	86	0.033	100	4.5	-0.5	503	142	209	271	242	865	273.4	252	72	56 56	72	-0.050
120	188.900	0.55	0.75	105	2.5	86	0.033	100	4.0	-0.5	498	143	208	277	242	849	273.6	250	72	57	73	-0.050
139	194,400	0.55	0.75	105	2.5	87	0.033	101	3.6	-0.4	502	143	207	276	244	855	274.4	260	72	57	72	-0.048
140	199.920	0.55	0.75	105	2.5	87	0.033	101	3.1	-0.5	482	143	210	276	247	871	271.6	254	73	57	73	-0.048 -0.048
150	205.425	0.55	0.75	106	2.5	87	0.033	101	2.7	+0.4	446	145	219	283	249	970	268.4	244	72	58	72	
160	210.910	0.55	0.75	106	2.5	86	0.033	100	2.3	-0.4	419	147	224	286	250	818	265.2	229	72	58	73	-0.045 -0.043
170	216.320	0.54	0.75	106	2.5	86	0.033	99	2.1	-0.2	400	148	221	282	249	738	260.0	218	73	58	73	
180	221.750	0.54	0.75	106	2.5	85	0.033	99	1.9	-0.2	379	150	213	274	248	729	252.8	204	73	59	73	-0.043 -0.038
190	227.350	0.56	0.75	106	2.5	84	0.033	102	1.7	-0.2	355	152	203	266	245	683	244.2	192	73	60	73	-0.038
200	232.900	0.56	0.75	106	2.5	83	0.033	101	1.5	+0.2	329	154	191	255	241	643	234.0	179	73	60	73	
210	238.385	0.55	9.75	107	2.5	83	0.033	100	1.4	+0.1	323	154	188	252	239	628	231.2	176	73	61	73	-0.035 -0.035
220	243.905	0.55	0.75	107	2.5	83	0.033	100	1.2	-0.2	319	155	184	247	237	653	228.4	186	73	61	73	-0.033
230	249.430	0.55	0.75	107	2.5	83	0.033	100	1.0	-0.2	316	156	183	244	236	626	227.0	189	73	61	73	-0.033
240	254.950	0.55	0.75	107	2.5	83	0.033	100	0.9	-0.1	309	156	182	238	235	612	224.0	185	73	61	73	-0.033
250	260.465	0.55	0.75	107	2.5	83	0.033	100	0.7	-0.2	296	157	183	232	233	593	220.2	179	73	61	73	-0.033
260	265.985	0.55	0.75	107	2.5	82	0.033	100	0.5	-0.2	298	158	187	229	230	653	220.4	181	73	62	73	-0.033
270	271.510	0.55	0.75	107	2.5	82	0.033	100	0.4	-0.1	301	159	191	228	228	641	221.4	176	73	61	73	-0.033
280	277.025	0.55	0.75	107	2.5	82	0.033	100	0.3	-0.1	298	161	192	228	227	619	221.2	174	72	61	73	-0.033
299	282.550	0.55	0.75	107	2.5	82	0.033	100	0.2	-0.1	296	162	194	226	227	620	221.0	174	73	61	73	-0.033
300	288.055	0.55	0.75	107	2.5	82	0.033	100	0.1	-0.1	293	164	195	224	228	600	220.8	173	72	60	73	-0.033
310	293.590	0.55	0.75	107	2.5	81	0.033	100	0.0	-0.1	287	165	194	222	229	593	219.4	168	72	60	73	-0.033
Avg/Total	169.890	0.55	0.73	101.91		85.27	0.033	100.60									77		72.53	58.66		-0.033

OMINI-Test Laboratories, Inc. Beaverion, OR Phone (503) 6-3-3788

(*)

(***

STOVE TEMPERATURE TEST DATA - WETHOD 5G

Time Weight										
	ŀ		Data:	= 0		Range:	2.5-3.0		Coal Bed; 2.6	7.6
		Stack			1. L	TEMPERATURES (OF	TURES (c			FB. INTER
	gnt Weight	Draft	Ambient	Top	Bottom	Back	Left	Right	Flue	Catalyst
_		-,095	7.7	278	1/6	275	277	235	077	676
) (1.3	-,073	71	737	134	269	285	256	424	1236
20 6.9	1.1	048	72	1111	08/	757	202	7 20	201	00//
30 5.9	011 6	065	77	656	651	244	326	177	201	6/11
40 5.7	0.8	060	77	608	191	240	334	254	328	6701
	1,0	-,063	73	700	162	142	34/1	259	3.57	1078
60 33	0.8	060	73	652	791	251	339	269	338	987
10 23	4.0	-,053	7.3	603	79/	247	333	27/	797	727
80 2.6	0,3	-,050	73	phS	161	240	219	26.04	2/4	7/4
90								***	700~	9
00										
10										
20			1000		11 100	10	///			
30				i francisco	792 Kg/4/	3	14/8 OK'S			
40						6.46		20-42-2		
50						6.3	00 of	2-22-02		
09						(6.25	5)			
70										
80										
06										
AVG										
					\	`				
		Technicia	Technician signature:	,) (

Control No. P-SFO-0004 (Woodstove Temperature Test Date:Method SC),s4s, Effective dats: 08/07/2000

2-7-42-42

Page 1 of 1

Run 2

OMNI-Test Laboratories, Inc.
Certification Test Report dated 3/17/03: \\Omni02\users\Testing\Fireplace Products International Ltd\219-S-04-3 FPI Hampton\Series D\219-S-04-3.doc

2-11-82-42

Run: 2	7
Manufacturer:	FPI Regency
Model:	Hampton D
Tracking No.:	421
Project No.:	219-5-94-3
Test Date.	21-Feb-03
Beginning Clock Time	11:46
Recording Interval:	10 min. O
Total Sampling Time	~~0

			Velo	city Trave	rse Data	<u>-</u>			٦
	Pt.1	Pt.2	Pt.3	Pt.4	Pt.5	Pt.6	Pt.7	Pt.8	7
Initial dP	0.923	0.034	0.036	0.040	0.038	0.036	0.034	0.023	ᆌ.
nitial Temp	101	101	101	101	101	101	101	101	٦.

PM Control Module:	20		
Dilution Tunnal MW(dry):	29.00	lb lb-mole	
Dilution Tunnel MW(wet):	28.56	l&lb-mole	
Dilution Tunnel H2O:	4.00	percent	
dution Tunnel Static:	-0.800	H2O	
Pitet Tube Cp:	0.99		
Meter Box Y Factor:	0.977		
Barometric Pressure:	Bezin	Middle	
	~9 98	~0 5·9	,

Sig	nature/Date: // /	1. Mes	ga 4-17-03
	Tunnel Velocity:	12.59	ft/sec.
	Intial Tunnel Flow:	134.8	scfm
	Average Tunnel Flow	136.1	scfm
	Tunnel Area:	0.196	ft2
!	Post-Test Leak Check	.01@11	cfm@Hz
Ft	iel Moisture (dry basi	20.3	%
	Total Particulate:	58.2	mg
\vernge	Filter Holder No.:		• •

			Part	iculate S	Sampling Da	la			Fuel W	લંટુht, lb ·				Wo	od Heater T	emperatur	Data oF					Stack
Elapsed Tune	Gas Meter Cubic Feet	Sample Rate, cfm	Onifice dH	Meter oF	Meter Vac In. Hg.	Dilution Tunnel Temp.	Dilution Funnel dP	Pro. Rate (10%)	Scale Reading	Weight Change	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Firebox Interior	Average Surface	Stack	Filter	Impinger	Ambient	Draft In. H2O
Ū	294.050		0.00	77	0	101	0.034		12.8		473	184	261	326	278	798	304.4	303	74			
10	299.395	0.53	0.75	80	2.5	100	0.034	103	11.8	-1	547	182	303	322	272	746	325.2			71	74	-0.050
20	304.760	0.54	0.75	35	2.5	94	0.034	102	11.1	-0.7	472	182	294	306	256	729	302.0	324	77	60	74	-0.058
30	310.140	0.54	0.75	92	2.5	99	0.034	101	10.0	-1.1	635	131	233	299	246	964	329.8	370	ļ	60	74	-0.053
40	315.545	0.54	0.75	96	2.5	103	0.034	101	3.7	-1.3	708	180	253	308	241	1097	338.0		78 .	59	76	-0.070
50	321.000	0.55	0.75	101	2.5	101	0.034	101	7.6	-1.1	691	177	238	322	241	1112	337.8	400	79	59	77	-0.075
60	326.420	0.54	0.75	103	2.5	100	0.034	100	6.6	-1	680	175	271	327	241	1074	337.8	385	30	59	7/	-0.063
70	331.889	0.55	0.75	105	2.5	102	0.034	101	5,7	-0.9	674	172	286	331	247	1157	333.8		80	59	77	-0.063
\$0	337.350	0.55	0.75	107	2.5	100	0.034	100	4.9	-0.8	637	172	289	337	254	1062	337.8	368	80	58	77	-0.068
90)	342,830	0.55	0.75	108	2.5	98	0.034	100	4.3	-0.6	611	172	288	333	259	1032		346	80 .	58	78	-0.063
100	348.300	0.55	0.75	109	2.5	96	0.034	100	3.7	-0.6	594	172	235	327	263	1000	332.6	332	90 .	58	77	-0.063
110	353 \$70	0.55	0.75	109	2.5	95	0.034	100	3.3	-0.4	571	172	287	323	267	1000	328.2	322	81	60	77	-0.060
120	359.350	0.56	0.75	109	2.5	94	0.034	101	2.8	-0.5	554	171	291	321	269		324.0	305	81	60	76	-0.057
130	364.370	0.55	0.75	109	2.5	92	0.034	100	2.5	-0.3	499	170	290	314	269	975 802	321.2	297	80	60	77	-0.054
140	370.470	0.56	0.75	109	2.5	91	0.034	102	2.2	-0.3	444	170	284	302	270		308.4	273	80	60	76	-0.050
150	375.970	0.55	0.75	110	2.5	89	0.034	99	2.0	-0.2	394	170	269	288	267	746	294.0	253	3 4)	61	77	-0.047
160	381.550	0.56	0.75	110	2.5	89	0.034	101	1.3	-0.2	378	171	263	283	263	767 757	277.6	230	79	61	76	-0.044
170	387.100	0.56	0.75	110	2.5	33	0.034	100	1.6	-0.2	365	172	255	278	259	735	271.6	222	79	61	76	-0.042
130	392.665	0.56	0.75	110	2.5	37	0.034	100	1.4	-0.2	346	173	246	269	253	702	265.8	216	- 29	61	77	-0.042
190	398.220	0.56	0.75	110	2.5	36	0.034	100	1.3	-0.1	333	174	238	262	250	678	257.4	205	79	62	77	-0.040
200	403.785	0.56	0.75	110	2.5	85	0.034	100	1.1	-0.2	325	174	232	255	246	690	251.4	200	79	62	76	-0.038
210	409.350	0.56	0.75	110	2.5	35	0.034	100	0.9	-0.2	328	175	229	252	243		246.4	198	79	62	75	-0.038
220	414.920	0.56	0.75	110	2.5	34	0.034	100	0.7	-0.2	327	176	228	250		730	245.4	199	79	62	76	-0.038
230	420,500	0.56	0.75	110	2.5	34	0.034	100	0.6	-0.1	321	178	224	249	240	701	244.2	197	-3	62	⁻⁶	-0.038
240	126.050	0.56	0.75	110	2.5	83	0.034	100	0.5	-0.1	309	179	219	249	234	63-1	241.8	194	-3	62	75	-0.038
250	431.690	0.56	0.75	110	2.5	83	0.034	100		-0.2	303	130	216	238		644	2,17.0	190	73	62	75	-0.038
260	437.160	0.56	0.75	110	2.5	83	0.034	100	0.1	-0.2	298	130	213	234	233	646	234.0	187	-8	62	75	-0.035
270	442,722	0.56	0.75	110	2.5	83	0.034	100	0.0	-0.1	292	130	207	231	231	631	231.2	184	78	62	75	-0.035
Ave Total	143,672	0.55	0.72	104.61		91.96	0.034	100.56							223	607	227.6	182		62	75	-0.035
		V.33	V.72	104.01		21.20	0.034	100.30									77		78.36	60.39		-0.050

STOVE TEMPERATURE TEST DATA - METHOD 5G

Page of	219-5-04-3 Tracking #: 4/2/	Run #; 2	
	Client/Model: FPI Raymay Hamplow D Project #: 219-5-04-3	Date: 2-21-03 Test Crew: K. Morann	OMNI Equipment ID #:

Fuel Delta Stack Weight Weight Draft Ambient Top Bottom Back Left Right 7.3	lest				.010	C						1
Fuel Delta Stack Weight Weight Draft Ambient Top Bottom Back Left Right 7.3					סום. מים) 			2 (- 3.		Cost Bod.	7:7
Weight Weight Weight Meight Weight Weight Weight To a.s. Ambient Top Bottom Back Left Right 3.3 Additional Top Bottom Back Left Sold Sold Sold Sold Sold Sold Sold Sold		Fuel	Delta	Stack				MPFRA.	TIRES (0		COG! DGU.	. 3
7.3	Time	!	Weight	Draft	Ambient	Top	Bottom	Back	ta	-J	El to	1.0. 12/EX
7.9 1.4013 72 733 185 281 321 248 6.17 1.2013 73 707 193 265 330 248 5.1 1.0010 74 770 193 263 351 258 5.1 0.4060 74 640 169 288 350 267 2.9 0.8063 75 669 186 288 350 273 2.1 0.2050 74 510 184 273 349 282 2.1 0.2050 74 510 184 273 349 282	0			-,043	72	830	89/	747	407	244	201	- Calanysi
67 (2073 73 707 193 265 330 249 51 (0070 73 711 195 263 351 252 4.3 (4010 74 770 193 283 365 267 31 06060 74 640 169 288 370 273 29 08063 75 669 186 288 364 261 21 02050 74 510 184 273 349 282 21 02050 74 510 184 273 349 282	위	7.9	1.4	073	72	733	185	281	27/	248	219	/55/
5.7 (1.0070 73 711 195 263 351 252 4.3 (1.4010 74 770 193 283 365 267 3.7 0.6063 75 669 186 288 364 281 2.7 0.2050 74 510 184 273 349 282 2.1 0.2050 74 510 184 273 349 282	20	6.7	7.7	073	73	707	193	265	330	749	2//2	1261
4.3 1.4010 74 770 193 283 365 267 3.7 0.6060 74 640 169 258 370 273 2.7 0.2063 75 669 186 288 364 281 2.7 0.1050 74 510 184 273 349 282 2.7 0.1050 74 510 184 273 349 282	30	5.7	011	-,070	73	711	561	263	36/	25.7	2017	972/
3.7 0.6 -1.063 75 669 186 258 370 273 2.7 0.8 -0.63 75 669 186 258 364 251 2.7 0.2 -0.50 74 510 184 273 349 282 Pauliminoty: 1.07 Kg/llt a	4]	43	1.4	0.070	7:17	770	193	283	36.5	262	470	1192
2,7 0,8063 75 669 186 288 364 281 2,7 0,2050 74 510 184 273 349 282 PRadiuminary: 1.07 Kg/W d	3	3.7	0.6	-,060	74	640	169	2.58	370	273	350	126
2,7 0,2 -050 74 510 184 273 349 282 PReliminary: 107 Kg/Hr &	00	2,9	8'0	063	75	609	186	288	364	281	350	707
Parliminary: 1.07 KgM &	2	2,7	2,0	-,050	44	5/0	187	273	672	787	100	777
Pasliminosy: 1107 KgM &	80									707	787	4//
Phaliminosty: 1.07 Kg/Hr &	90											
PReliminary: 1107 Kg/M d	00											
1.07 Kg/Hr &	10						; ;					,
	20						ראבונאנא	ەرى:	1.07 Kg	THE W	5,27 9/4	11/2
<u>(21:2)</u>	30							,	2		5.42 as at 2-24.03	of 2-24.03
	40										5.23 00	20-52-03
	50										5.12	
70 80 90 AVG	9											
80 90 AVG	70											
90 AVG	80											
AVS	06											
	AVG											

Control No. P-SFO-0004 (Woodstove Temperature Test PatterMethod SQ).24s, Effective date; 08/07/2000

215-12-12

Page Lof.

Run 3

OMNI-Test Laboratories, Inc.
Certification Test Report dated 3/17/03: \\Onni02\text{users\Testing\Fireplace Products International Ltd\219-S-04-3 FPI Hampton\Series D\219-S-04-3.doc

Run: 3	
Manufacturer:	FPI Regency
Model:	Hampton D
Tracking No.:	421
Project No.:	219-S-04-3
Test Date:	24-Feb-03
Beginning Clock Time:	11:29
Recording Interval:	10 min. (

			Veloc	ity Trave	rse Data			
	Pt.1	Pt.2	Pt.3	Pt.4	Pt.5	Pt.ó	Pt.7	Pt.8
Initial dP	0.030	0.036	0.046	0.048	0.032	0.038	0.042	0.042
lnitial Temp		124	126	126	128	130	130	132

					Sig	nature/Date: ///	[.]/[b.	/gen
	PM Control Module:	20				Tunnel Velocity:	13.70	fl∕sec.
	Dilution Tunnel MW(dry):	29.00	lb/lb-mole			Intial Tunnel Flow:	140.7	scfm
	Dilution Tunnel MW(wet):	28.56	lb-lb-mole			Average Tunnel Flow	143.3	scfm
0		4.00	percent			Tunnel Area:	0.196	ft2
	ilution Tunnel Static:	-0.630	*H2O		1	Post-Test Leak Check	06@10.5	cfm@
	Pitot Tube Cp:	0.99				uel Moisture (dry basi	21.8	. –
	Meter Box Y Factor:	0.977				Total Particulate:	7.5	mg
	Barometric Pressure:	Begin	Middle	End	Average	Filter Holder No.:		
		29.90	29.87	29.86	20.88	*Wa		•

	,		Parti	culate S	ampling Da	ta			Fuel W	eight, lb				Woo	d Heater T	emperature	e Data, oF					Stack
Elapsed Time	Gas Meter Cubic Feet	Sample Rate, ofm	Orifice dH	Meter oF	Meter Vac. In. Hg.	Dilution Tunnel Temp.	Dilution Tunnel dP	Pro. Rate (10%)	Scale Reading	Weight Change	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Firebox Interior	Average Surface	Stack	Filter	Impinger exit	Ambient	Draft In. H2O
0	443.000		0.00	68	0	127	0.039		12.7		693	213	330	430	347	1006	402.6	460	66	60	66	-0.075
10	448.300	0.53	0.75	70	2.5	122	0.039	104	10.6	-2.1	808	214	306	409	343	1158	416.0	622	64	51	66	-0.093
20	453.590	0.53	0.75	76	2.5	128	0.039	103	8.1	-2.5	949	209	300	403	335	1337	439.2	665	72	50	67	-0.093
30	458.925	0.53	0.75	82	2.5	126	0.039	102	6.0	-2.1	- 1003	203	321	422	336	1347	457.0	648	74	50	68	-0.093
40	464.280	0.54	0.75	87	2.5	118	0.039	101	4.6	-1.4	891	198	346	443	347	1261	445.0	569	74	49	67	-0.085
50	469.685	0.54	0.75	91	2.5	111	0.039	101	3.5	-1.i	788	195	348	450	356	1189	427.4	514	74	50	67	-0.080
60	475.095	0.54	0.75	93	2.5	106	0.039	100	2.6	-0.9	721	195	341	440	362	1128	411.8	. 48I	73	50	67	-0.078
70	480.560	0.55	0.75	95	2.5	102	0.039	100	1.9	-0.7	668	196	347	420	364	1098	399.0	. 443	73	50	67	-0.073
80	485.950	0.54	0.75	96	2.5	100	0.039	98	1.3	-0.6	641	197	355	411	361	1072	393.0	427	72	50	66	-0.070
90	491.340	0.54	0.75	96	2.5	98	0.039	98	0.9	-0.4	602	201	344	394	358	965	379.8	401	72	51	67	-0.068
100	496.825	0.55	0.75	97	2.5	95	0.039	100	0.6	-0.3	543	204	319	374	352	932	358.4	. 369	72	51	67	-0.063
110	502.275	0.54	0.75	98	2.5	93	0.039	99	0.3	+0.3	504	207	312	360	346	897	345.8	352	72	52	67	-0.060
120	507.735	0.55	0.75	98	2.5	92	0.039	99	0.0	-0.3	456	210	298	343	336	830	328.6	329	72	52	68	-0.058
Avg/Total	64.735	0.54	0.69	88.23		109.11	0.039	100.33									74		71.54	51.23		-0.076

STOVE TEMPERATURE TEST DATA - METHOD 5G

Page of	18/	Run # 3	
	7-3 Tracking #:) R	
	2 Project #: 219-5-04-3	IN .	
	HAMPON D Proje	Test Crew: K. Mara	
	Client/Model: FPI Ryency		ment ID #:
	Client/Mode	Date: 2-24-03	OMNI Equipment ID #:

## Range: 2.6-3.1 Coal Bed: TEMPERATURES (0F)	_ω 0 0 0									Actual:	١
Fuel Delta Stack	┸	-		Data:	# 0		Range:	2.6-3.1		Coal Bed:	2.7
Weight Weight Weight Top Bottom Back Left Right File	_}					Ī	EMPERA	TURES (c)F)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-1-	\downarrow	Ambient	Top	Bottom	Back	Left	Right	Flue	Cataly
12.7 1.7 -1.088 6.5 719 191 284 317 282 56.2 10.5 2.12 -1.088 6.5 818 193 260 324 277 571 8.5 2.0 -1.088 6.5 858 195 251 354 278 571 9.5 2.0 -1.073 6.6 899 203 305 429 320 564 12. 2.3 -1.083 6.6 899 203 305 429 320 564 2.7 0.16 -1.073 6.6 758 211 32.3 430 345 484 2.7 0.9 -1.075 6.6 758 211 32.3 430 345 484 2.7 0.9 -1.075 6.6 758 211 32.3 430 345 484 2.7 0.9 -1.075 6.6 758 211 32.3 430 345 484 2.7 0.9 -1.075 6.6 758 211 32.3 430 345 484 2.7 0.9 -1.075 6.6 758 211 32.3 430 345 484 2.7 0.9 -1.075 6.6 758 211 32.3 430 345 484 2.7 0.9 -1.075 6.6 758 211 32.3 430 345 484 2.7 0.9 -1.075 6.6 758 211 32.3 430 345 484 2.7 0.9 -1.075 6.6 758 211 32.3 430 345 484 2.7 0.9 -1.075 6.6 758 211 32.3 430 345 484 2.7 0.9 -1.075 6.6 758 211 32.3 430 345 484 2.7 0.9 -1.075 6.6 758 211 32.3 430 345 484 2.7 0.9 -1.075 6.6 758 758 758 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2			-063	49	280	183	329	328	285	788	727
6.5 3.12 088 65 818 193 260 324 277 576 8.5 2.0 088 65 858 195 251 354 278 576 6.5 2.0 070 66 899 198 359 291 625 4.2 2.3 5.0 183 353 429 370 564 3.6 0.1 073 66 758 211 323 473 358 463 2.7 0.9 075 66 758 211 323 473 345 484 2.7 0.9 075 66 758 211 323 473 345 484 1 0.9 075 66 758 211 323 430 345 484 1 0.9 075 8.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		-	880'-	65	219	161	284	3/7	282	67.2	24//
8.5 2.0088 65 858 195 251 354 278 596 65 818 195 250 359 251 625 429 251 625 429 251 625 429 251 625 429 251 625 429 251 625 429 251 625 429 251 625 429 320 564 63 551 66 758 211 323 433 358 463 551 66 758 211 323 430 345 484 63 551 651 6	_	+	088	65	818	193	260	324	277	57/	1724
6.5 2.0090 6.6 898 198 259 389 291 625 4.2 2.3083 66 899 203 205 429 320 564 3.6 0.6073 66 758 211 323 433 338 463 2.7 0.9075 66 758 211 323 430 345 484 2.7 0.9075 66 758 211 323 430 345 484 DRUMINARY: 3.36 Kg/Hr 2 2.01 g/hr DRUMINARY: 3.36 Kg/Hr 2 2.01 g/hr 1.87 62 526.02	_	-	088	65	858	195	251	354	278	765	1376
4,2 2,3 5,083 66 899 203 305 429 320 564 3,6 0,6073 66 758 211 323 433 538 463 7 2,7 0,9075 66 758 211 323 430 345 484 DRUMARY: 3,36 Ky/W @ 2,01 g/hr 1,87 24 of 2,26-02		1	090	ور	868	861	259	389	291	120	1400
3.6 0.6073 66 758 211 323 433 338 463 . 2.7 0.9075 66 758 211 323 430 345 484 DR. Liwinary: 2.36 Kg/Hr 2 201 g/ar 187 cv of 2-26-02	٠,	2,3	5805	99	899	203	205	429	320	27.5	1/87
2,7 0,9 -,075 66 758 211 323 430 345 484 DRIWINARY: 2,36 Kg/Hr 2 201 g/hr 187 22 22-02		200	073	ور	715	207	3/3	433	338	27/7	>///
PRed insinarry: 2,36 Kg/Hr 2,201 g/dr 1,87 es of 2-26-02		6.0	-,075	99	758	211	372	470	2115	1.01	
Deciminary: 2.36 Kg/Hr 2 201 g/hr 187 60 of	80							2	27.2	181	3501
Dec iminary: 3.36 Kg/Hr 2 2.01 g/hr	06										
Dew iminary: 2,36 Kg/Hr 2 201 g/hr 187 es of	00										
Deciminary: 2.36 Kg/Hr 2 201 g/hr 187 es of	10										
107 8 107 8 181 8 181 8 191 8	20			0.00			111/ /		1/		
1,87 th of	30				7770		THE Y		glac		
50 60 <td< td=""><td>40</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>787</td><td></td><td>-20-02-</td><td></td></td<>	40						•	787		-20-02-	
60 70 80 90 AVG	50										
70 80 90 AVG	90										
80 90 AVG	70										
90 AVG	80										
AVG	06										
	4VG										

()

Control No. P-SFG-0004 (Woodstove Temperature Test Data-Mothod SC).sts. Effective date: 08/07/2010

2-23-42-42

Run 4

OMNI-Test Laboratories, Inc.
Certification Test Report dated 3/17/03: \\Omni\02\users\Testing\Fireplace Products International Ltd\219-S-04-3 FPI Hampton\Series D\219-S-04-3.doc

2-27082-42

Run: 4	1
Manufacturer:	FPI Regency
Model:	Hampton D
Tracking No.:	421
Project No.:	219-S-04-3
Test Date:	25-Feb-03
Beginning Clock Time:	10:26
Recording Interval:	10 min.
Total Sampling Time	190 min

			A STOC	ity Trave	rse Data			
	Pt.1	Pt.2	Pt.3	Pt.4	Pt.5	Pt.6	Pt.7	Pt.3
Initial dP	0.036	0.042	0.044	0.038	0.040	0.042	0.044	0.034
Initial Temp.	101	101	101	101	101	101	101	101

			Signa	ature/Date: /~/	7.7	
PM Control Module:	20			Tunnel Velocity:	13.67	fl/sec.
Dilution Tunnel MW(dry):	29.00 lb/lb-mol	e		Intial Tunnel Flow:	145.6	scfm
Dilution Tunnel MW(wet):	28.56 lb-lb-mol	₹	A	verage Tunnel Flow:	146.4	sofm
Dilution Tunnel H2O:	4.00 percent			Turmel Area:	0.196	ft2
Dilution Tunnel Static:	-0.650 H2O		Po	ost-Test Leak Check	0.004.64	cfm@ Hg
Pitot Tube Cp:	0.99		Fue	l Moisture (dry basi	20.6	
Meter Box Y Factor:	0.977			Total Particulate:	19.7	me
Barometric Pressure:	Begin Middle	End	Average	Filter Holder No.:		. ~

,					•									-			29.90	29.88	29.81	29.86	•Hg	-
			Parti	culate S	Sampling Da	ıta			Fuel W	eight, lb		-		Woo	xd Heater T	emperatur	e Data, oF				<u> </u>	Stack
Elapsed Time	Gas Meter Cubic Feet	Sample Rate, ofm	Orifice dH	Meter oF	Meter Vac. In. Hg.	Dilution Tunnel Temp.	Dilution Tunnel dP	Pro. Rate (10%)	Scale Reading	Weight Change	Firebox Top	Firebox Bottom	Firebox Back	Firebox Left	Firebox Right	Firebox Interior	Average Surface	Stack	Filter	Impinger exit	Ambient	Draft In. H2O
0	508.200		0.00	71	0	101	0.040		12.0		528	192	309	387	338	829	350.8	331	66	62	68	-0.058
10	513.520	0.53	0.75	74	2.5	100	0.040	103	10.9	-1.1	579	197	270	352	321	695	343.8	370	67	53	69	
20	518.850	0.53	0.75	80	2.5	105	0.040	102	9.2	-1.7	741	198	242	328	303	1192	362.4	478	68	53	69	-0.065 -0.080
30	524.190	0.53	0.75	86	2.5	109	0.040	102	7.5	-1.7	863	195	252	331	291	1289	386.4	533	78	53	70	-0.083
40	529.550	0.54	0.75	90	2.5	108	0.040	101	6.1	-1.4	821	191	276	355	294	1256	387.4	501	74	53	70	-0.080
50	534.940	0.54	0.75	93	2.5	106	0.040	101	4.9	-1.2	795	189	291	367	301	1383	388.6	488	74	53	70	-0.078
60	540,400	0.55	0.75	96	2.5	104	0.040	102	3.7	-1.2	769	186	315	384	310	1234	392.8	468	75	53	70	-0.075
70	545.770	0.54	0.75	97	2.5	101	0.040	100	3.0	-0.7	690	186	323	387	318	1149	380.8	414	74	53	70	-0.068
80	551.200	0.54	0.75	98	2.5	97	0.040	100	2.5	-0.5	606	187	309	379	321	1028	360.4	372	74	53	71	-0.065
90	556.650	0.54	0.75	99	2.5	96	0.040	100	2.0	-0.5	604	188	301	368	319	1040	356.0	369	74	54	70	-0.065
100	562.160	0.55	0.75	100	2.5	95	0.040	101	1.5	-0.5	578	189	293	359	320	9.59	347.8	351	74	54	70	-0.063
110	567.580	0.54	0.75	100	2.5	92	0.040	99	1.3	-0.2	496	191	282	348	318	878	327.0	311	75	55	72	-0.055
120	573.040	0.55	0.75	101	2.5	90	0.040	99	1.0	-0.3	447	193	268	332	311	827	310.2	290	75	55	72	-0.052
130	578.540	0.55	0.75	101	2.5	89	0.040	100	0.8	-0.2	425	195	283	323	305	812	306.2	280	74	55	72	-0.052
140	584.030	0.55	0.75	101	2.5	88	0.040	100	0.7	-0.1	392	196	244	312	295	757	287.8	265	74	55	72	-0.050
150	589.530	0.55	0.75	101	2.5	87	0.040	100	0.5	-0.2	369	196	230	301	285	722	276.2	251	74	55	71	-0.048
160	595.030	0.55	0.75	101	2.5	86	0.040	100	0.4	-0.1	351	195	222	291	275	710	266.8	243	73	55	71	-0.045
170	600.530	0.55	0.75	101	2.5	85	0.040	100	0.2	-0.2	334	193	217	279	266	657	257.8	233	73	55	71	-0.045
180	606.050	0.55	0.75	101	2.5	84	0.040	100	0.1	-0.1	315	190	210	269	257	616	248.2	223	73	55	71	-0.042
190	611.575	0.55	0.75	102	2.5	84	0.040	100	0.0	-0.1	295	189	206	255	249	576	238.8	211	72	55	71	-0.042
Avg/Total	103.375	0.54	0.71	94.65		95.35	0.040	100.52									112		73.05	51.15		0.040

l d 1/2/ Page__ Run#: _ Tracking #:__ 219-5-04-3 HAMPLON D Project #: Morgan Test Crew: K. OMNI Equipment ID #: Client/Model: FPI

STOVE TEMPERATURE TEST DATA - METHOD 5G

\$ - cm - r - r - 41

, (C				300						-10110	
1821				Data;	0		Range.	Range: 2.4-3.0	~	Acidal.	7
j	Fue.	Delta	Stack				TEMPERATURES (AC)	7/ SEG! L	Ú	Coal 3ed;	
ııme	Weight	Weight	Draff	Ambient	1	0			I	ļ	f.b. INTER
0	11.0		780 -			Bollom	даск	Left	Right	F'ue	Catalys
10	8.3	27	0/0:1	3	885	/3/	325	338	282	651	1234
20	100	1 7	28	3	930	141	228	353	289	209	6/14/
300	7:7	711	088	67	930	154	324	388	30/	586	1477
3 8	176	ازو	-1085	89	816	163	337	411	212	777	
2 0	5.5		-,070	69	786	174	358	437	224	467	0351
000	3,0	0.5	068	69	705	183	778	4/14	244	0770	103/
8	2.5	0,5	-,058	6.7	570	787	1.1	100	717	82,71	754
70						2	715	575	34/	1-85625	758
80											
06											
00											
10						raciluinary:	124: 1.43	Kg/hr	6 3.1	a/hr	
20										, 0	
30											
40											
20											
09											
70											
80											
06											
A<0.			-								

Control No. P.SFG-0004 (Woodstave Temperature Test Datus Method Sc.).Ar, Effective date: 08/07/2000

Technician signature;

2-31-82-42

Page Lof I

Date: